I Know I Need to Measure RF Power – Now What?

Bob Buxton, Wireless Telecom Group/Boonton IMS2023, June 14, 2023

Agenda: I Know I Need to Measure RF Power – Now What?

- Power sensor technology
- Type of power sensor and power measurement architecture
- Applications: Radar
- Applications: Communications
- Summary and Q&A

RF and Microwave Power Sensor Technology: Overview

Sensor Technology	Characteristics	Application
ThermalHeating effectThermistor, thermocouple	 ✓ Highest accuracy ✓ Average power measurement independent of waveform type X Low sensitivity/dynamic range X Influenced by ambient temperature X Not suitable for instantaneous or pulse measurements 	Calibration
Diode DetectorAC to DC conversionTrue Average and Peak	 ✓ True average measurement independent of waveform type ✓ Fast rise time, wide video bandwidth ✓ Peak power measurement ✓ Narrow pulse measurement Non-linear, but can be corrected 	Radar Communications EMC Others
 Receiver Downconversion to IF and detected or sampled (e.g. spectrum analyzer) 	 ✓ May permit I/Q data download ✓ Frequency selective X Frequency selective – not enough BW for wideband signals 	Communications (with measurement bandwidth limitations) and where I/Q data required.
RF SamplingDirect digitization at RF	 ✓ OK for low frequency signal X Limited dynamic range for high freq. X Expensive for high frequency 	

More information available at: https://boonton.com/resource-library/principles-of-power-measurement-guide

RF and Microwave Power Sensor Technology: Diode Sensors

- Diode performs an AC to DC conversion
- The relationship of the DC voltage to the power measured depends on the diode region of operation

Types of Power Sensor

True Average Power Sensor

- Overlapping multiple paths to ensure operation in square law region
 - -60 to +20 dBm
- Modulation Independent

Peak Power Sensor

- Fast real-time sample rate and linearization
 - 100 MSa/s
 - -60 to +20 dBm
- Instantaneous and average values
- Random Interleaved Sampling (RIS)
 - 10 GSa/s ⇒ 100 ps resolution
- Wide video bandwidth to track RF envelope fluctuation VARUUULLAAANAA JAANA VARUAA LA LA LA LAANAA JALUA ARAA JALAA VARAA VA

Radar Pulse Measurement: Definitions

Parameters of interest for pulsed or burst signals.

16 Automatic Pulse Measurements:

- Rise time
- Fall time
- Pulse width
- Off time
- Period
- Pulse repetition frequency
- Duty cycle
- Pulse peak

- Pulse overshoot
- Pulse average
- Waveform average
- Top level power
- Droop
- Bottom level power
- Edge delay
- Skew

Radar: significance of sensor rise time choice

RTP5000 peak power sensors: rise time as fast as 3 ns.

Radar: Significance of sample rate

- Real time sample rate: determines resolution for single sweep captures
- Effective sample rate: uses RIS and determines resolution on repetitive signals

- 100 ns/div
- Zoom to 5 ns/div
- With 10 GSa/s see fine detail
- 100 ps resolution

- 100 ns/div
- Zoom to 20 ns/div
- With 20 MSa/s no more detail
- Limit is 50 ns resolution

Pulse Measurement Examples

- 1. Radar TX overshoot & droop reduction
 - Enables higher P_{AV} and greater radar range
- 2. Automated pulse measurements
 - Droop is one of 16
- 3. Multi-pulse burst analysis
 - E.g. secondary surveillance radar
- RTP5000 series sensor family
 - Frequency to 40 GHz, rise time as low as 3 ns
 - Sample rate 100 MS/s cont., 10 GS/s effective
 - 100,000 measurements/second (Max, Min, Average)

Communication Applications: Nature of Signals

Example Wi-Fi: m-QAM modulated OFDM sub-carriers

Wi-Fi 6: 2x 1024 tones spaced at 78.125 kHz

- Channel bandwidth 160 MHz
- Wide variation in instantaneous signal amplitude ⇒ high peak to average power ratio (PAPR)
- Need to ensure amplifier non-linearities are not reducing peaks and hence causing symbol/bit errors

Communications Applications: Sensor Video Bandwidth

- Errors in envelope power, peak envelope power, and average power
- Using average power as a substitute can mask signal compression
- Wi-Fi 6 and 5G channel bandwidths: up to 160 MHz and 100 MHz
 - Boonton's RTP5000 peak power sensors feature VBW up to 195 MHz

Communications Applications: CCDF and PAPR

- Complementary Cumulative Distribution Function (CCDF):
 - Statistical depiction that shows how frequently a specific PAPR (Crest Factor) will occur

Rate of Occurrence	100.0 - 1.0	9 38 dBr, 0.0100 %	×	Non-Linear
		dB		

Average Input Power = -11.9 dBm			
Input PAPR = 9.4 dB	Output PAPR = 9.2 dB	Delta PAPR = -0.2 dB	
Pin = -11.9 dBm	Pout = 2.5 dBm	Gain = 14.4 dB	

Average Input Power = -7.1 dBm			
Input PAPR = 9.4 dB	Output PAPR = 7.4 dB	Delta PAPR = -2.0 dB	
Pin = -7.1 dBm	Pout = 7.1 dBm	Gain = 14.2 dB	

Summary: 10 Questions

Question	If Yes	If No
1. What frequency is my signal?	Choose sensor covering frequency range	
2. What level is my signal?	Choose sensor with dynamic range to match	
3. Does my signal have modulation?	Consider question 4	CW or true average sensor
4. Do I only want to measure average power?	Choose a true average power sensor	Consider questions 5 thru 10
5. Do I want to profile a pulse in time domain?	Chose peak power sensor $(T_r < signal T_r)$	
6. What time resolution is required?	Choose appropriate effective sample rate	
7. Do I need automated pulse measurements?	Choose from 16 measurements	
8. Is my signal a burst of pulses?	Consider multi-pulse measurements	
9. Am I concerned about PAPR?	Need sensor VBW > channel BW	
10. Do I want to see a specific % occurrence of PAPR?	Consider CCDF capability	

Peak Power Analyzer

Thank You!

Bob Buxton bbuxton@wtcom.com

Please visit our booth #1619 to see Boonton power measurement solutions and other great products from Boonton, Noisecom, and Holzworth.

Boonton Portfolio

Markets

- Commercial comms
- Military/Aerospace
- Avionics
- R&D and Scientific
- ATE, Production Test

Applications

- RF components and amps
- Medical devices
- Radar systems
- WiFi & LTE
- Military communications

Average/RMS **Power Measurement**

EMI/EMC

Products

- RF Power Meters
- USB Power Sensors
- Modulation Analyzers
- Audio Analyzers
- RF Signal Generators
- RF Noise Generators

RF Signal Generation

RF Noise Generation

CW Power Measurement

Wireless Telecom Group Test & Measurement Business Unit Overview

Boonton

Markets

- Commercial comms
- Military/Aerospace
- Avionics
- R&D and Scientific
- ATE, Production Test
- Commercial comms
- Satellite comms
- Military/Aerospace
- R&D and Scientific

Applications

- RF components and amps
- Medical devices
- Radar systems
- WiFi & LTE
- Military communications
- EMI/EMC
- Signal integrity
- Jamming
- Noise Figure Measurement
- Receiver calibration
- Carrier-to-Noise

Products

- RF Power Meters
- USB Power Sensors
- Modulation Analyzers
- Audio Analyzers
- RF Signal Generators
- RF Noise Generators
- Noise Generators
- Noise Standards
- Calibrated Sources
- Noise Modules
- Chips and Diodes
- Jitter and PSRR analysis

- Quantum Computing
- Commercial comms
- Satellite comms
- Military/Aerospace
- R&D and Scientific

- Qubit Manipulation
- Absolute Phase Noise **Analysis**
- Additive Phase Noise **Analysis**
- LO Generation

- RF Synthesizers
- Synthesizer Modules
- Phase Noise Analyzers
- Amplifiers
- Phase Detectors
- Phase Shifters
- Frequency Dividers

